Human Species in Davel | World Anvil
BUILD YOUR OWN WORLD Like what you see? Become the Master of your own Universe!

Remove these ads. Join the Worldbuilders Guild

Human

Humans are the only extant members of the subtribe Hominina. They are characterized by erect posture and bipedal locomotion; high manual dexterity and heavy tool use compared to other animals; open-ended and complex language use compared to other animal communications; and a general trend toward larger, more complex brains and societies.   Early hominins—particularly the australopithecines, whose brains and anatomy are in many ways more similar to ancestral non-human apes—are less often referred to as "human" than hominins of the genus Homo. Several of these hominins used fire, occupied much of Eurasia, and gave rise to anatomically modern Homo sapiens in Africa about 315,000 years ago. Nonetheless, in November 2018, scientists reported that nearly all extant populations of animals, including humans, maybe a result of a population expansion that began between one and two hundred thousand years ago, based on genetic mitochondrial DNA studies. As such, humans began to exhibit evidence of behavioural modernity around 50,000 years ago, and in several waves of migration, they ventured out of Africa and populated most of the world.   The spread of humans and their large and increasing population has had a profound impact on large areas of the environment and millions of native species worldwide. Advantages that explain this evolutionary success include a relatively larger brain with a particularly well-developed neocortex, prefrontal cortex and temporal lobes, which enable high levels of abstract reasoning, language, problem-solving, sociality, and culture through social learning. Humans use tools to a much higher degree than any other animal, are the only extant species known to build fires and cook their food, and are the only extant species to clothe themselves and create and use numerous other technologies and arts.   Humans are uniquely adept at using systems of symbolic communication for self-expression and the exchange of ideas, and for organizing themselves into purposeful groups. Humans create complex social structures composed of many cooperating and competing groups, from families and kinship networks to political states. Social interactions between humans have established an extremely wide variety of values, social norms, and rituals, which together form the basis of human society. Curiosity and the human desire to understand and influence the environment and to explain and manipulate phenomena has provided the foundation for developing science, philosophy, mythology, religion, anthropology, and numerous other fields of knowledge.   Though most of human existence has been sustained by hunting and gathering in band societies, increasing numbers of human societies began to practise sedentary agriculture approximately some 10,000 years ago, domesticating plants and animals, thus allowing for the growth of civilization. These human societies subsequently expanded in size, establishing various forms of government, religion, and culture around the world, unifying people within regions to form states and empires. The rapid advancement of scientific and medical understanding in the 19th and 20th centuries led to the development of fuel-driven technologies and increased lifespans, causing the human population to rise exponentially.

Basic Information

Anatomy

Most aspects of human physiology are closely homologous to corresponding aspects of animal physiology. The human body consists of the legs, the torso, the arms, the neck, and the head. An adult human body consists of about 100 trillion cells. The most commonly defined body systems in humans are the nervous, the cardiovascular, the circulatory, the digestive, the endocrine, the immune, the integumentary, the lymphatic, the musculoskeletal, the reproductive, the respiratory, and the urinary system.   Humans, like most of the other apes, lack external tails, have several blood type systems, have opposable thumbs, and are sexually dimorphic. The comparatively minor anatomical differences between humans and chimpanzees are a result of human bipedalism. One difference is that humans have a far faster and more accurate throw than other animals. Humans are also among the best long-distance runners in the animal kingdom, but slower over short distances. Humans' thinner body hair and more productive sweat glands help avoid heat exhaustion while running for long distances.   As a consequence of bipedalism, human females have narrower birth canals. The construction of the human pelvis differs from other primates, as do the toes. A trade-off for these advantages of the modern human pelvis is that childbirth is more difficult and dangerous than in most mammals, especially given the larger head size of human babies compared to other primates. This means that human babies must turn around as they pass through the birth canal, which other primates do not do, and it makes humans the only species where females usually require help from their conspecifics (other members of their own species) to reduce the risks of birthing. As a partial evolutionary solution, human fetuses are born less developed and more vulnerable. Chimpanzee babies are cognitively more developed than human babies until the age of six months when the rapid development of human brains surpasses chimpanzees. Another difference between women and chimpanzee females is that women go through the menopause and become unfertile decades before the end of their lives. All species of non-human apes are capable of giving birth until death. Menopause probably developed as it has provided an evolutionary advantage (more caring time) to young relatives.   Apart from bipedalism, humans differ from chimpanzees mostly in smelling, hearing, digesting proteins, brain size, and the ability of language. Humans' brains are about three times bigger than in chimpanzees. More importantly, the brain to body ratio is much higher in humans than in chimpanzees, and humans have a significantly more developed cerebral cortex, with a larger number of neurons. The mental abilities of humans are remarkable compared to other apes. Humans' ability of speech is unique among primates. Humans are able to create new and complex ideas and to develop technology, which is unprecedented among other organisms on Earth.[95]   It is estimated that the worldwide average height for an adult human male is about 172 cm, while the worldwide average height for adult human females is about 158 cm. Shrinkage of stature may begin in middle age in some individuals but tends to be typical in the extremely aged. Through history, human populations have universally become taller, probably as a consequence of better nutrition, healthcare, and living conditions. The average mass of an adult human is 54–64 kg for females and 70–83 kg for males. Like many other conditions, body weight and body type is influenced by both genetic susceptibility and environment and varies greatly among individuals.   Although humans appear hairless compared to other primates, with notable hair growth occurring chiefly on the top of the head, underarms and pubic area, the average human has more hair follicles on his or her body than the average chimpanzee. The main distinction is that human hairs are shorter, finer, and less heavily pigmented than the average chimpanzee's, thus making them harder to see. Humans have about 2 million sweat glands spread over their entire bodies, many more than chimpanzees, whose sweat glands are scarce and are mainly located on the palm of the hand and on the soles of the feet. Humans have the largest number of eccrine sweat glands among species.   The dental formula of humans is: 2.1.2.3 2.1.2.3 . Humans have proportionately shorter palates and much smaller teeth than other primates. They are the only primates to have short, relatively flush canine teeth. Humans have characteristically crowded teeth, with gaps from lost teeth usually closing up quickly in young individuals. Humans are gradually losing their wisdom teeth, with some individuals having them congenitally absent.

Genetics and Reproduction

Like all mammals, humans are a diploid eukaryotic species. Each somatic cell has two sets of 23 chromosomes, each set received from one parent; gametes have only one set of chromosomes, which is a mixture of the two parental sets. Among the 23 pairs of chromosomes, there are 22 pairs of autosomes and one pair of sex chromosomes. Like other mammals, humans have an XY sex-determination system, so that females have the sex chromosomes XX and males have XY.   One human genome was sequenced in full in 2003, and currently, efforts are being made to achieve a sample of the genetic diversity of the species. By present estimates, humans have approximately 22,000 genes. The variation in human DNA is very small compared to other species, possibly suggesting a population bottleneck during the Late Pleistocene (around 120,000 years ago), in which the human population was reduced to a small number of breeding pairs. Nucleotide diversity is based on single mutations called single nucleotide polymorphisms. The nucleotide diversity between humans is about 0.1%, i.e. 1 difference per 1,000 base pairs. A difference of 1 in 1,000 nucleotides between two humans chosen at random amounts to about 3 million nucleotide differences, since the human genome has about 3 billion nucleotides. Most of these single nucleotide polymorphisms are neutral but some (about 3 to 5%) are functional and influence phenotypic differences between humans through alleles.   By comparing the parts of the genome that are not under natural selection and which therefore accumulate mutations at a fairly steady rate, it is possible to reconstruct a genetic tree incorporating the entire human species since the last shared ancestor. Each time a certain mutation appears in an individual and is passed on to his or her descendants, a haplogroup is formed including all of the descendants of the individual who will also carry that mutation. By comparing mitochondrial DNA, which is inherited only from the mother, geneticists have concluded that the last female common ancestor whose genetic marker is found in all modern humans, the so-called mitochondrial Eve, must have lived around 110,000 to 220,000 years ago.   Human accelerated regions, first described in August 2006, are a set of 49 segments of the human genome that are conserved throughout vertebrate evolution but are strikingly different in humans. They are named according to their degree of difference between humans and their nearest animal relative. Found by scanning through genomic databases of multiple species, some of these highly mutated areas may contribute to human-specific traits.   The forces of natural selection have continued to operate on human populations, with evidence that certain regions of the genome display directional selection in the past 15,000 years.   As with other mammals, human reproduction takes place as internal fertilization by sexual intercourse. During this process, the male inserts his erect penis into the female's vagina and ejaculates semen, which contains sperm. The sperm travels through the vagina and cervix into the uterus or Fallopian tubes for fertilization of the ovum. Upon lifespan and implantation, gestation then occurs within the female's uterus.   The zygote divides inside the female's uterus to become an embryo, which over a period of 38 weeks (9 months) of gestation becomes a fetus. After this span of time, the fully grown fetus is birthed from the woman's body and breathes independently as an infant for the first time. At this point, most modern cultures recognize the baby as a person entitled to the full protection of the law, though some jurisdictions extend various levels of personhood earlier to human fetuses while they remain in the uterus.   Compared with other species, human childbirth is dangerous. Painful labours lasting 24 hours or more are not uncommon and sometimes lead to the death of the mother, the child or both. This is because of both the relatively large fetal head circumference and the mother's relatively narrow pelvis. The chances of a successful labour increased significantly during the 20th century in wealthier countries with the advent of new medical technologies. In contrast, pregnancy and natural childbirth remain hazardous ordeals in developing regions of the world, with maternal death rates approximately 100 times greater than in developed countries.   In developed countries, infants are typically 3–4 kg in weight and 50–60 cm in height at birth. However, low birth weight is common in developing countries and contributes to the high levels of infant mortality in these regions.

Growth Rate & Stages

Helpless at birth, humans continue to grow for some years, typically reaching sexual maturity at 12 to 15 years of age. Females continue to develop physically until around the age of 18, whereas male development continues until around age 21. The human lifespan can be split into a number of stages: infancy, childhood, adolescence, young adulthood, adulthood and old age. The lengths of these stages, however, have varied across cultures and time periods. Compared to other primates, humans experience an unusually rapid growth spurt during adolescence, where the body grows 25% in size. Chimpanzees, for example, grow only 14%, with no pronounced spurt. The presence of the growth spurt is probably necessary to keep children physically small until they are psychologically mature. Humans are one of the few species in which females undergo menopause. It has been proposed that menopause increases a woman's overall reproductive success by allowing her to invest more time and resources in her existing offspring and in turn their children, rather than by continuing to bear children into old age.   Evidence-based studies indicate that the lifespan of an individual depends on two major factors, genetics and lifestyle choices. For various reasons, including biological/genetic causes, women live on average about four years longer than men—as of 2013, the global average life expectancy at birth of a girl is estimated at 70.2 years compared to 66.1 for a boy. There are significant geographical variations in human life expectancy, mostly correlated with economic development—for example, life expectancy at birth in Hong Kong is 84.8 years for girls and 78.9 for boys, while in Swaziland, primarily because of AIDS, it is 31.3 years for both sexes. The developed world is generally aging, with the median age around 40 years. In the developing world, the median age is between 15 and 20 years. While one in five Europeans is 60 years of age or older, only one in twenty Africans is 60 years of age or older. The number of centenarians (humans of age 100 years or older) in the world was estimated by the United Nations at 210,000 in 2002. At least one person, Jeanne Calment, is known to have reached the age of 122 years; higher ages have been claimed but they are not well substantiated.

Ecology and Habitats

Early human settlements were dependent on proximity to water and, depending on the lifestyle, other natural resources used for subsistence, such as populations of animal prey for hunting and arable land for growing crops and grazing livestock. But humans have a great capacity for altering their habitats by means of technology, through irrigation, urban planning, construction, transport, manufacturing goods, deforestation and desertification[citation needed], but human settlements continue to be vulnerable to natural disasters, especially those placed in hazardous locations and characterized by lack of quality of construction. Deliberate habitat alteration is often done with the goals of increasing material wealth, increasing thermal comfort, improving the amount of food available, improving aesthetics, or improving ease of access to resources or other human settlements. With the advent of large-scale trade and transport infrastructure, proximity to these resources has become unnecessary, and in many places, these factors are no longer a driving force behind the growth and decline of a population. Nonetheless, the manner in which a habitat is altered is often a major determinant in population change.   Technology has allowed humans to colonize six of the Earth's seven continents and adapt to virtually all climates. However, the human population is not uniformly distributed on the Earth's surface, because the population density varies from one region to another and there are large areas almost completely uninhabited, like Antarctica. Within the last century, humans have explored Antarctica, underwater environment, and outer space, although large-scale colonization of these environments is not yet feasible. With a population of over seven billion, humans are among the most numerous of the large mammals. Most humans (61%) live in Asia. The remainder lives in the Americas (14%), Africa (14%), Europe (11%), and Oceania (0.5%).   Human habitation within closed ecological systems in hostile environments, such as Antarctica and outer space, is expensive, typically limited in duration, and restricted to scientific, military, or industrial expeditions. Life in space has been very sporadic, with no more than thirteen humans in space at any given time. Between 1969 and 1972, two humans at a time spent brief intervals on the Moon. As of December 2018, no other celestial body has been visited by humans, although there has been a continuous human presence in space since the launch of the initial crew to inhabit the International Space Station on 31 October 2000. However, other celestial bodies have been visited by human-made objects.   Since 1800, the human population has increased from one billion to over seven billion. The combined biomass of all humans on Earth in 2018 was estimated at ~ 60 million tons, about 10 times larger than that of all non-domesticated mammals.   In 2004, some 2.5 billion out of 6.3 billion people (39.7%) lived in urban areas. In February 2008, the U.N. estimated that half the world's population would live in urban areas by the end of the year. Problems for humans living in cities include various forms of pollution and crime, especially in inner city and suburban slums. Both overall population numbers and the proportion residing in cities are expected to increase significantly in the coming decades.   Humans have had a dramatic effect on the environment. Humans are apex predators, being rarely preyed upon by other species. Currently, through land development, combustion of fossil fuels, and pollution, humans are thought to be the main contributor to global climate change. If this continues at its current rate it is predicted that climate change will wipe out half of all plant and animal species over the next century.

Dietary Needs and Habits

Humans are omnivorous, capable of consuming a wide variety of plant and animal material. Varying with available food sources in regions of habitation, and also varying with cultural and religious norms, human groups have adopted a range of diets, from purely vegan to primarily carnivorous. In some cases, dietary restrictions in humans can lead to deficiency diseases; however, stable human groups have adapted to many dietary patterns through both genetic specialization and cultural conventions to use nutritionally balanced food sources. The human diet is prominently reflected in Human culture and has led to the development of food science.   Until the development of agriculture approximately 10,000 years ago, Homo sapiens employed a hunter-gatherer method as their sole means of food collection. This involved combining stationary food sources (such as fruits, grains, tubers, and mushrooms, insect larvae and aquatic molluscs) with wild game, which must be hunted and killed in order to be consumed. It has been proposed that humans have used fire to prepare and cook food since the time of Homo erectus. Around thirty thousand years ago, humans developed agriculture, which substantially altered their diet. This change in diet may also have altered human biology; with the spread of dairy farming providing a new and rich source of food, leading to the evolution of the ability to digest lactose in some adults. Agriculture led to increased populations, the development of cities, and because of increased population density, the wider spread of infectious diseases. The types of food consumed, and the way in which they are prepared, have varied widely by time, location, and culture.   In general, humans can survive for two to eight weeks without food, depending on stored body fat. Survival without water is usually limited to three or four days. About 36 million humans die every year from causes directly or indirectly related to starvation. Childhood malnutrition is also common and contributes to the global burden of disease. However global food distribution is not even, and obesity among some human populations has increased rapidly, leading to health complications and increased mortality in some developed, and a few developing countries. Worldwide over one billion people are obese, while in the United States 35% of people are obese, leading to this being described as an "obesity epidemic." Obesity is caused by consuming more calories than are expended, so excessive weight gain is usually caused by an energy-dense diet.
EXTINCT
Scientific Name
Homo Sapiens Sapiens
Average Height
1.8 m
Average Weight
62
Related Ethnicities

Remove these ads. Join the Worldbuilders Guild

Comments

Please Login in order to comment!